Abstract

Both a reasonably large valley splitting (VS) and a sufficiently long valley exciton lifetime are crucial in valleytronics device applications. Currently, no single system possesses both attributes simultaneously. Herein, we demonstrate that a Janus monolayer HfZrSiCO2 concurrently hosts a giant intrinsic VS and excitonic quasi-particles with long valley lifetime due to valley-sublayer coupling and built-in electric field. In addition, the band structure of the monolayer HfZrSiCO2 can be continuously manipulated by either an external electric field or a biaxial strain, giving rise to a tunable VS and driving a direct-to-indirect band gap transition. Moreover, the system exhibits valley-contrasting linear dichroism in exciton absorption. These results suggest that the Janus monolayer HfZrSiCO2 is a promising candidate for information applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.