Abstract
Semistable continuous convolution semigroups on Lie groups with non-trivial idempotent are characterized by semistable continuous convolution semigroups with trivial idempotent on a contractible, hence homogeneous Lie group. (Cf., e.g. [9], [10], III, theorem 3.5.4.) In fact, this homogeneous group is obtained by a re-topologization of the contractible subgroup on which the original semistable laws are concentrated. In [26] E. Siebert investigated such intrinsic topologies for contractible subgroups of Polish groups, generalizing partially the before mentioned situation of Lie groups. Here we use these ideas to obtain intrinsic topologies for H-contractible subgroups of Polish groups, where H denotes a compact subgroup. This allows, under additional assumptions (which are satisfied in the Lie group case) to obtain similar characterization of semistable laws with non-trivial idempotents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.