Abstract
Starting from a tight-binding model, we derive the energy gaps induced by intrinsic spin-orbit (ISO) coupling in the low-energy band structures of graphene nanoribbons. The armchair graphene nanoribbons may be either semiconducting or metallic, depending on their widths in the absence of ISO interactions. For the metallic ones, the gaps induced by ISO coupling decrease with increasing ribbon widths. For the ISO interactions, we find that zigzag graphene nanoribbons with odd chains still have no band gaps while those with even chains have gaps with a monotonic decreasing dependence on the widths. First-principles calculations have also been carried out, verifying the results of the tight-binding approximation. Our paper reveals that the ISO interaction of graphene nanoribbons is governed by their geometrical parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.