Abstract

We study intrinsic properties of attractor in Boolean dynamics of complex networks with scale-free topology, comparing with those of the so-called Kauffman's random Boolean networks. We numerically study both frozen and relevant nodes in each attractor in the dynamics of relatively small networks ( 20 ⩽ N ⩽ 200 ). We investigate numerically robustness of an attractor to a perturbation. An attractor with cycle length of ℓ c in a network of size N consists of ℓ c states in the state space of 2 N states; each attractor has the arrangement of N nodes, where the cycle of attractor sweeps ℓ c states. We define a perturbation as a flip of the state on a single node in the attractor state at a given time step. We show that the rate between unfrozen and relevant nodes in the dynamics of a complex network with scale-free topology is larger than that in Kauffman's random Boolean network model. Furthermore, we find that in a complex scale-free network with fluctuation of the in-degree number, attractors are more sensitive to a state flip for a highly connected node (i.e. input-hub node) than to that for a less connected node. By some numerical examples, we show that the number of relevant nodes increases, when an input-hub node is coincident with and/or connected with an output-hub node (i.e. a node with large output-degree) one another.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.