Abstract
Anhydride organic materials are promising candidates for lithium batteries on account of reversible insertion and de-insertion of Li+ on the conjugated carbonyl structure. However, anhydride compounds suffer from drawbacks that rapidly attenuate the capacity of lithium batteries. This study aims to reveal the essential reason for the rapid capacity attenuation of four anhydride organic compounds by characterizing the morphological features of the lithium foil surface and the loss of active materials before and after charge-discharge cycles, to speculate the reasons for the electrochemical property attenuation along with molecular weight decreases. This study proposes that the phenomenon is because the anhydride monomer react Li+ during the charge and discharge processes, then cross the separator and deposits on the surface of lithium foil (Li-foil), leading to loss of active materials and low utilization of the Li-foil. Based on the mechanism study, anhydride compounds will face the new development in the field of energy storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.