Abstract

IntroductionObliterative vasculopathy and fibrosis are hallmarks of systemic sclerosis (SSc), a severe systemic autoimmune disease. Bone marrow-derived mesenchymal stromal cells (MSCs) from SSc patients may harbor disease-specific abnormalities. We hypothesized disturbed vascular smooth muscle cell (VSMC) differentiation with increased propensity towards myofibroblast differentiation in response to SSc-microenvironment defining growth factors and determined responsible mechanisms.MethodsWe studied responses of multipotent MSCs from SSc-patients (SSc-MSCs) and healthy controls (H-MSCs) to long-term exposure to CTGF, b-FGF, PDGF-BB or TGF-β1. Differentiation towards VSMC and myofibroblast lineages was analyzed on phenotypic, biochemical, and functional levels. Intracellular signaling studies included analysis of TGF-β receptor regulation, SMAD, AKT, ERK1/2 and autocrine loops.ResultsVSMC differentiation towards both, contractile and synthetic VSMC phenotypes in response to CTGF and b-FGF was disturbed in SSc-MSCs. H-MSCs and SSc-MSCs responded equally to PDGF-BB with prototypic fibroblastic differentiation. TGF-β1 initiated myofibroblast differentiation in both cell types, yet with striking phenotypic and functional differences: In relation to H-MSC-derived myofibroblasts induced by TGF-β1, those obtained from SSc-MSCs expressed more contractile proteins, migrated towards TGF-β1, had low proliferative capacity, and secreted higher amounts of collagen paralleled by reduced MMP expression. Higher levels of TGF-β receptor 1 and enhanced canonical and noncanonical TGF-β signaling in SSc-MSCs accompanied aberrant differentiation response of SSc-MSCs in comparison to H-MSCs.ConclusionsDeregulated VSMC differentiation with a shift towards myofibroblast differentiation expands the concept of disturbed endogenous regenerative capacity of MSCs from SSc patients. Disease related intrinsic hyperresponsiveness to TGF-β1 with increased collagen production may represent one responsible mechanism. Better understanding of repair barriers and harnessing beneficial differentiation processes in MSCs could widen options of autologous MSC application in SSc patients.

Highlights

  • Obliterative vasculopathy and fibrosis are hallmarks of systemic sclerosis (SSc), a severe systemic autoimmune disease

  • transforming growth factor-β1 (TGF-β1) initiated myofibroblast differentiation in both cell types, yet with striking phenotypic and functional differences: In relation to HMSC-derived myofibroblasts induced by TGF-β1, those obtained from SSc-mesenchymal stromal cells (MSCs) expressed

  • Abnormal Differentiation Capacity of MSC in SSc more contractile proteins, migrated towards TGF-β1, had low proliferative capacity, and secreted higher amounts of collagen paralleled by reduced MMP expression

Read more

Summary

Methods

We studied responses of multipotent MSCs from SSc-patients (SSc-MSCs) and healthy controls (H-MSCs) to long-term exposure to CTGF, b-FGF, PDGF-BB or TGF-β1. Intracellular signaling studies included analysis of TGF-β receptor regulation, SMAD, AKT, ERK1/2 and autocrine loops. We assayed MSCs from six representative patients with SSc and from six age- and sex-matched healthy controls. Patients were between 38 and 74 years (median 50) of age; four were women (67%). Three had limited cutaneous SSc, three had diffuse cutaneous SSc (dSSc) with a disease duration of 11– 120 month (median 92). Controls were healthy subjects without any sign of autoimmune or fibrotic diseases who donated bone marrow for allogeneic transplantation. The study protocol was approved by the local institutional review board (Ethikkomission der Charité –Universitätsmedizin Berlin). All subjects were included in the study after providing written informed consent

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.