Abstract

In this study, we sought to evaluate changes in peritumoral fibrosis after transarterial chemoembolization (TACE) in a rabbit VX2 liver tumor model using intravoxel incoherent motion diffusion-weighted imaging (IVIM DWI) and ultrasound shear wave elastography (SWE). A total of 20 rabbits underwent implantation of VX2 tumor tissues in the left lobe of the liver. The rabbits were randomly divided into an experimental group (n = 10) or a control group (n = 10). Those in the experimental group were treated with an emulsion of lipiodol and pirarubicin through a microcatheter 2–3 weeks after implantation; those in the control group were treated with sterile water. Compared with the control group, the true diffusion coefficient (D) and pseudodiffusion coefficient (D*) values in liver tissues were significantly lower (p < 0.05 for all) and liver stiffness values (LSV) (10.58 ± 0.89 kPa) were higher in the experimental group (7.65 ± 0.86 kPa; p < 0.001). The median stage of liver fibrosis based on METAVIR scores was 1 (1,1) in the control group and 2 (2,3) in the experimental group (Z = 4.15, p < 0.001). D, D*, and LSV were significantly correlated with pathologic staining in the assessment of liver fibrosis (r = −0.54 p = 0.015; r = −0.50, p = 0.025; r = 0.91, p < 0.001; respectively). These data suggest that TACE aggravates liver injury and liver fibrosis, especially surrounding the tumor, in a rabbit VX2 liver tumor model. IVIM DWI and SWE can be used to evaluate the change in liver fibrosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.