Abstract

Systemically administered vectors must cross the endothelial lining of tumor blood vessels to access cancer cells. Vectors that interact with markers on the lumenal surface of these endothelial cells might have enhanced tumor localization. Here, we generated oncolytic measles viruses (MVs) displaying alpha(v)beta(3) integrin-binding peptides, cyclic arginine-glycine-aspartate (RGD) or echistatin, on the measles hemagglutinin protein. Both viruses had expanded tropisms, and efficiently entered target cells via binding to integrins, but also retained their native tropisms for CD46 and signaling lymphocyte activation molecule (SLAM). When fluorescently labeled and injected intravascularly into chick chorioallantoic membranes (CAMs), in contrast to unmodified viruses, the integrin-binding viral particles bound to the lumenal surface of the developing chick neovessels and infected the CAM vascular endothelial cells. In a mouse model of VEGF-induced angiogenesis in the ear pinna, the integrin-binding viruses, but not the parental virus, infected cells at sites of new blood vessel formation. When given intravenously to mice bearing tumor xenografts, the integrin-binding virus infected endothelial cells of tumor neovessels in addition to tumor parenchyma. To our knowledge, this is the first report demonstrating that oncolytic MVs can be engineered to target the lumenal endothelial surface of newly formed blood vessels when administered intravenously in living animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.