Abstract

The morphogen sonic hedgehog (Shh) is implicated in neural tissue patterning and the growth of brain structures during embryogenesis and postnatal development and is also present in the adult brain. Shh signals through interaction with the tumour suppressor Patched (Ptc). This receptor for Shh is associated with Smoothened (Smo), a protein with high homology to the G-protein coupled receptors. However, little is known about the transduction mechanisms implicated in Shh signalling in the adult brain. The study described here shows that injection of aminoterminal myristoylated Shh (myrShhN) into the adult rat striatum robustly increases the levels of Ptc transcripts in selective brain areas including the subventricular zone (SVZ). The adult SVZ contains cell progenitors, which can proliferate and differentiate into new neurons and glia. In the myrShhN injected animals, proliferation and differentiation of these SVZ precursor cells were not affected as demonstrated by BrdU incorporation and immunohistochemistry performed with specific antibodies for nestin (uncommitted neural progenitors), PSA-NCAM (migrating neuroblasts) or GFAP (astrocytes). Together with the presence of Smo expressing cells and amino-terminal Shh (ShhN) protein in SVZ area of untreated animals, the data presented here supports the hypothesis that the Shh pathway may be activated in the adult brain, and that a niche for Shh signalling exists within the adult SVZ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.