Abstract
The novel fatty acid trans-9-methyl-10-octadecenoic acid was isolated from the coryneform bacterial strain LMG 3820 (previously misidentified as Arthrobacter globiformis) and identified by spectroscopic methods and chemical derivatization. This fatty acid is attached to the unusual lipid acyl phosphatidylglycerol. Five different species of this lipid type were identified; their structures were elucidated by tandem mass spectrometry and are reported here for the first time. Additionally, we identified three different cardiolipins, two bearing the novel fatty acid. The characteristic 10-methyl-octadecanoic acid was present only in phosphatidylinositol. Because of the unusual fatty acid pattern of strain LMG 3820, the 16S rDNA sequence was determined and showed regions of identity to sequences of Corynebacterium variabilis DSM 20132(T) and DSM 20536. All three strains possessed the novel fatty acid, identifying trans-9-methyl-10-octadecenoic acid as a potential biomarker characteristic for this taxon. Surprisingly, the fatty acid and relative abundances of phospholipids of Corynebacterium sp. strain LMG 3820 were similar to those of the type strain but different from those of Corynebacterium variabilis DSM 20536, although all three strains possessed identical 16S rDNA sequences and strains DSM 20132(T) and DSM 20536 have 90.5% DNA-DNA homology. This is one of the rare cases wherein different organisms with identical 16S rDNA sequences have been observed to present recognizably different fatty acid and lipid compositions. Since methylation of a fatty acid considerably lowers the transition temperature of the corresponding lipid resulting in a more flexible cell membrane, the intraspecific variation in the lipid composition, coinciding with the morphological and Gram stain reaction variability of this species, probably offers an advantage for this species to inhabit different environmental niches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.