Abstract

Eukaryotes often form intimate endosymbioses with prokaryotic organisms. Cases in which these symbionts are transmitted cytoplasmically to host progeny create the potential for co-speciation or congruent evolution among the distinct genomes of these partners. If symbionts do not move horizontally between different eukaryotic hosts, strict phylogenetic congruence of their genomes is predicted and should extend to relationships within a single host species. Conversely, even rare 'host shifts' among closely related lineages should yield conflicting tree topologies at the intraspecific level. Here, we investigate the historical associations among four symbiotic genomes residing within an aphid host: the mitochondrial DNA of Uroleucon ambrosiae aphids, the bacterial chromosome of their Buchnera bacterial endosymbionts, and two plasmids associated with Buchnera. DNA sequence polymorphisms provided a significant phylogenetic signal and no homoplasy for each data set, yielding completely and significantly congruent phylogenies for these four genomes and no evidence of horizontal transmission. This study thus provides the first evidence for strictly vertical transmission and 'co-speciation' of symbiotic organisms at the intraspecific level, and represents the lowest phylogenetic level at which such coevolution has been demonstrated. These results may reflect the obligate nature of this intimate mutualism and indicate opportunities for adaptive coevolution among linked symbiont genomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.