Abstract

Maternal inheritance of targeted loss of function alleles encoding either the cyclin-dependent kinase inhibitor 1C ( Cdkn1c) or the insulin-like growth factor 2 receptor ( Igf2r) leads to fully penetrant perinatal lethality in C57BL/6J mice due to genomic imprinting. Here, we demonstrate that there is a marked enhancement in postnatal viability of F 1 mice carrying either the ablated Igf2r (∼32%) or Cdkn1c (∼83%) when the paternal genome was derived from the inbred Mus musculus musculus CzechII/Ei strain. Genetic and molecular analyses indicated that the increased viability was not caused by relaxation of imprinted gene expression, but is the consequence of unidentified polygenic modifiers that are not imprinted. In the course of this study, restriction-site polymorphisms between 129S1 and CzechII/Ei in 21 imprinted and 14 biallelically expressed genes were identified. These polymorphisms may prove useful in determining the effects of different mutant backgrounds on genomic imprinting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.