Abstract
One of the major issues facing current cardiac stem cell therapies for preventing postinfarct heart failure is the low retention and survival rates of transplanted cells within the injured myocardium, limiting their therapeutic efficacy. Recently, the use of scaffolding biomaterials has gained attention for improving and maximizing stem cell therapy. The objective of this protocol is to introduce a simple and straightforward technique to transplant bone marrow-derived mesenchymal stem cells (MSCs) using injectable hydroxyphenyl propionic acid (GH) hydrogels; the hydrogels are favorable as a cell delivery platform for cardiac tissue engineering applications due to their ability to be cross-linked in situ and high biocompatibility. We present a simple method to fabricate MSC-loading GH hydrogels (MSC/hydrogels) and evaluate their survival and proliferation in three-dimensional (3D) in vitro culture. In addition, we demonstrate a technique for intramyocardial transplantation of MSC/hydrogels in mice, describing a surgical procedure to induce myocardial infarction (MI) via left anterior descending (LAD) coronary artery ligation and subsequent MSC/hydrogels transplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.