Abstract

Reactive gliosis is a key feature and an important pathophysiological mechanism underlying chronic neurodegeneration following traumatic brain injury (TBI). In this study, we have explored the effects of intramuscular IGF-1 gene therapy on reactive gliosis and functional outcome after an injury of the cerebral cortex. Young adult male rats were intramuscularly injected with a recombinant adenoviral construct harboring the cDNA of human IGF-1 (RAd-IGF1), with a control vector expressing green fluorescent protein (RAd-GFP) or PBS as control. Three weeks after the intramuscular injections of adenoviral vectors, animals were subjected to a unilateral penetrating brain injury. The data revealed that RAd-IGF1 gene therapy significantly increased serum IGF1 levels and improved working memory performance after one week of TBI as compared to PBS or RAd-GFP lesioned animals. At the same time, when we analyzed the effects of therapy on glial scar formation, the treatment with RAd-IGF1 did not modify the number of glial fibrillary acidic protein (GFAP) positive cells, but we observed a decrease in vimentin immunoreactive astrocytes at 7 days post-lesion in the injured hemisphere compared to RAd-GFP group. Moreover, IGF-1 gene therapy reduced the number of Iba1+ cells with reactive phenotype and the number of MHCII + cells in the injured hemisphere. These results suggest that intramuscular IGF-1 gene therapy may represent a new approach to prevent traumatic brain injury outcomes in rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.