Abstract

Charge recombination to the electronic ground state typically occurs nonradiatively. We report a rational design of donor-bridge-acceptor molecules that exhibit charge-transfer (CT) emission through conjugated bridges over distances of up to 24 Å. The emission is enhanced by intensity borrowing and extends into the near-IR region. Efficient charge recombination to the initial excited state results in recombination fluorescence. We have established the identity of CT emission by solvent dependence, sensitivity to temperature, femtosecond transient absorption spectroscopy, and unique emission polarization patterns. Large excited-state electronic couplings and small energy gaps enable the observation of intramolecular long-range CT emission over the unprecedented long distance. These results open new possibilities of using intramolecular long-range CT emission in molecular electronic and biomedical imaging probe applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.