Abstract

We used ultrafast transient absorption spectroscopy to study excited-state dynamics of two keto-carotenoids, siphonaxanthin and siphonein. These two carotenoids differ in the presence of dodecanoyl-oxy group in siphonein, which is attached to the C19 carbon on the same side of the molecule as the conjugated keto group. We show that this dodecanoyl-oxy group, though not in conjugation, is still capable of modifying excited state properties. While spectroscopic properties of siphonein and siphonaxanthin are nearly identical in a non-polar solvent, they become markedly different in polar solvents. In a polar solvent, siphonein, having the dodecanoyl-oxy moiety, exhibits less pronounced vibrational bands in the absorption spectrum and has significantly enhanced characteristic features of an intramolecular charge-transfer (ICT) state in transient absorption spectra compared to siphonaxanthin. The presence of the dodecanoyl-oxy moiety also alters the lifetimes of the S1/ICT state. For siphonaxanthin, the lifetimes are 60, 20, and 14ps in n-hexane, acetonitrile, and methanol, whereas for siphonein these lifetimes yield 60, 11, and 10ps. Thus, we show that even a non-conjugated functional group can affect the charge-transfer character of the S1/ICT state. By comparison with fucoxanthin acyl-oxy derivatives, we show that position of the acyl-oxy group in respect to the conjugated keto group is the key feature determining whether the polarity-dependent behavior is enhanced or suppressed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.