Abstract

Regulated intramembrane proteolysis (RIP) involves cleavage of a transmembrane segment of a protein. RIP governs diverse processes in a wide variety of organisms and is carried out by different types of intramembrane proteases (IPs), including a large family of metalloproteases. The Bacillus subtilis SpoIVFB protein is a putative metalloprotease that cleaves membrane-tethered Pro-sigma(K), releasing sigma(K) to direct transcription of genes necessary for spore formation. By attaching an extra transmembrane segment to the N terminus of SpoIVFB, expression in E. coli was improved more than 100-fold, facilitating purification and demonstration of metalloprotease activity, which accurately cleaved purified Pro-sigma(K). Uniquely for IPs examined so far, SpoIVFB activity requires ATP, which binds to the C-terminal cystathionine-beta-synthase (CBS) domain of SpoIVFB. Deleting just 10 residues from the C-terminal end of SpoIVFB nearly eliminated cleavage of coexpressed Pro-sigma(K) in E. coli. The CBS domain of SpoIVFB was shown to interact with Pro-sigma(K) and ATP changed the interaction, suggesting that ATP regulates substrate access to the active site and renders cleavage sensitive to the cellular energy level, which may be a general feature of CBS-domain-containing IPs. Incorporation of SpoIVFB into preformed liposomes stimulated its ability to cleave Pro-sigma(K). Cleavage depended on ATP and the correct peptide bond was shown to be cleaved using a rapid and sensitive mass spectrometry assay. A system for biochemical studies of RIP by a metalloprotease in a membrane environment has been established using methods that might be applicable to other IPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.