Abstract

BackgroundWe recently demonstrated that the heart of late pregnant (LP) rodents is more prone to ischemia/reperfusion (I/R) injury compared to non-pregnant rodents. Lipids, particularly polyunsaturated fatty acids, have received special attention in the field of cardiovascular research. Here, we explored whether Intralipid (ITLD) protects the heart against I/R injury in LP rodents and investigated the mechanisms underlying this protection. Methods and resultsIn-vivo female LP rat hearts or ex-vivo isolated Langendorff-perfused LP mouse hearts were subjected to ischemia followed by reperfusion with PBS or ITLD (one bolus of 5mg/kg of 20% in in-vivo and 1% in ex-vivo). Myocardial infarct size, mitochondrial calcium retention capacity, genome-wide expression profiling, pharmacological inhibition and co-immunoprecipitation were performed. One bolus of ITLD at reperfusion significantly reduced the in-vivo myocardial infarct size in LP rats (23.3±2% vs. 55.5±3.4% in CTRL, p<0.01). Postischemic administration of ITLD also protected the LP hearts against I/R injury ex-vivo. ITLD significantly increased the threshold for the opening of the mitochondrial permeability transition pore in response to calcium overload (nmol-calcium/mg-mitochondrial protein: 290±17 vs. 167±10 in CTRL, p<0.01) and significantly increased phosphorylation of STAT3 (1.8±0.08 vs. 1±0.16 in CTRL, p<0.05) and GSK-3β (2.63±0.55 vs. 1±0.0.34 in CTRL, p<0.05). The ITLD-induced cardioprotection was fully abolished by Stattic, a specific inhibitor of STAT3. Transcriptome analysis revealed caveolin 2 (Cav2) was significantly upregulated by ITLD in hearts of LP rats under I/R injury. Co-immunoprecipitation experiments showed that Cav2 interacts with STAT3. ConclusionsITLD protects the heart in late pregnancy against I/R injury by inhibiting the mPTP opening through Cav2/STAT3/GSK-3β pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.