Abstract

Background/ObjectivesPancreatic intraductal pressure is related to the development of pancreatitis, including post-ERCP (endoscopic retrograde cholangiopancreatography) pancreatitis. In this study, we investigate pancreatic intraductal pressure in various mouse models of acute and chronic pancreatitis. MethodsPost-ERCP pancreatitis was induced by retrograde infusion of normal saline or radiocontrast at the constant rate of 10 or 20 μL/min. Obstructive pancreatitis was induced by ligation of the pancreatic duct followed by a single injection of caerulein and the changes of intraductal pressure were recorded in day 3 for obstructive acute pancreatitis and day 14 for obstructive chronic pancreatitis. Non-obstructive pancreatitis was induced by repetitive intraperitoneal injections of caerulein. The changes of intraductal pressure were recorded right after the last caerulein injection for non-obstructive acute pancreatitis and after the completion of 4-week caerulein injections for non-obstructive chronic pancreatitis. ResultsElevated pancreatic intraductal pressure was observed in both normal saline and radiocontrast infusion groups and was furtherly indicated that was positively correlated with the viscosity of solution but not genders. In the models of obstructive pancreatitis, a rise in intraductal pressure was observed in both acute and chronic pancreatitis; whereas in the models of non-obstructive pancreatitis, a rise in intraductal pressure was only observed in chronic, but not acute pancreatitis. ConclusionsDuring ERCP, the elevations in pancreatic intraductal pressure are induced by increasing rate or viscous solution of infusion. During different forms of experimental acute and chronic pancreatitis, obstructive or non-obstructive etiologies of pancreatitis also induces the elevations in pancreatic intraductal pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.