Abstract
We prove lower bounds on the worst-case error of numerical integration in tensor product spaces. The information complexity is the minimal number N of function evaluations that is necessary such that the N-th minimal error is less than a factor ε times the initial error, i.e., the error for N=0, where ε belongs to (0,1). We are interested to which extent the information complexity depends on the number d of variables of the integrands. If the information complexity grows exponentially fast in d, then the integration problem is said to suffer from the curse of dimensionality.Under the assumption of the existence of a worst-case function for the uni-variate problem, we present two methods for providing lower bounds on the information complexity. The first method is based on a suitable decomposition of the worst-case function and can be seen as a generalization of the method of decomposable reproducing kernels. The second method, although only applicable for positive quadrature rules, does not require a suitable decomposition of the worst-case function. Rather, it is based on a spline approximation of the worst-case function and can be used for analytic functions. Several applications of both methods are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.