Abstract

BackgroundThe Adenomatous polyposis coli (APC) tumour suppressor is found in multiple discrete subcellular locations, which may reflect sites of distinct functions. In Drosophila epithelial cells, the predominant APC relative (E-APC) is concentrated at the apicolateral adherens junctions. Genetic analysis indicates that this junctional association is critical for the function of E-APC in Wnt signalling and in cellular adhesion. Here, we ask whether the junctional association of E-APC is stable, or whether E-APC shuttles between the plasma membrane and the cytoplasm.ResultsWe generated a Drosophila strain that expresses E-APC (dAPC2) tagged with green fluorescent protein (GFP-E-APC) and we analysed its junctional association with fluorescence recovery after photobleaching (FRAP) experiments in live embryos. This revealed that the junctional association of GFP-E-APC in epithelial cells is highly dynamic, and is far less stable than that of the structural components of the adherens junctions, E-cadherin, α-catenin and Armadillo. The shuttling of GFP-E-APC to and from the plasma membrane is unaltered in mutants of Drosophila glycogen synthase kinase 3 (GSK3), which mimic constitutive Wingless signalling. However, the stability of E-APC is greatly reduced in these mutants, explaining their apparent delocalisation from the plasma membrane as previously observed. Finally, we show that GFP-E-APC forms dynamic patches at the apical plasma membrane of late embryonic epidermal cells that form denticles, and that it shuttles up and down the axons of the optic lobe.ConclusionsWe conclude that E-APC is a highly mobile protein that shuttles constitutively between distinct subcellular locations.

Highlights

  • The Adenomatous polyposis coli (APC) tumour suppressor is found in multiple discrete subcellular locations, which may reflect sites of distinct functions

  • We conclude that E-APC is a highly mobile protein that shuttles constitutively between distinct subcellular locations

  • green fluorescent protein (GFP)-E-APC is concentrated underneath the plasma membrane in apicolateral regions of embryonic epithelial cells (Fig. 1a; Fig. 2b)

Read more

Summary

Results

We generated a Drosophila strain that expresses E-APC (dAPC2) tagged with green fluorescent protein (GFP-E-APC) and we analysed its junctional association with fluorescence recovery after photobleaching (FRAP) experiments in live embryos. This revealed that the junctional association of GFP-E-APC in epithelial cells is highly dynamic, and is far less stable than that of the structural components of the adherens junctions, E-cadherin, α-catenin and Armadillo. The shuttling of GFP-E-APC to and from the plasma membrane is unaltered in mutants of Drosophila glycogen synthase kinase 3 (GSK3), which mimic constitutive Wingless signalling. We show that GFP-EAPC forms dynamic patches at the apical plasma membrane of late embryonic epidermal cells that form denticles, and that it shuttles up and down the axons of the optic lobe

Background
Results and discussion
Conclusion
Methods
Polakis P
Bienz M
16. Kemler R
26. Tepass U
29. Bienz M
36. Perrimon N
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.