Abstract

Plants have evolved many mechanisms to cope with adverse environmental stresses. Abscisic acid (ABA) accumulates significantly in plant cells in response to drought conditions, and this is believed to be a major mechanism through which plants enhance drought tolerance. In this study, we explore the possible mechanisms of osmotic stress perception by plant cells and the consequent induction of ABA biosynthesis. Immunoblotting and immunofluorescence localization experiments, using a polyclonal antibody against human integrin beta1, revealed the presence of a protein in Zea mays roots that is similar to the integrin proteins of animals and mainly localized in the plasma membrane. Treatment with GRGDS, a synthetic pentapeptide containing an RGD domain, which interacted specifically with the integrin protein and thus blocked the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, and the GRGDS analog which does not contain the RGD domain had no effect. Our results show that a strong interaction exists between the cell wall and plasma membrane and that this interaction is largely mediated by integrin-like proteins. They also imply that the cell wall and/or cell wall-plasma membrane interaction plays important roles in the perception of osmotic stress. Accordingly, we conclude that the cell wall and/or cell wall-plasma membrane interaction mediated by the integrin-like protein plays important roles in osmotic stress-induced ABA biosynthesis in Zea mays.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.