Abstract

Recent understandings ofArabidopsiszygote. Body axis formation is essential for the proper development of multicellular organisms. The apical-basal axis in Arabidopsis thaliana is determined by the asymmetric division of the zygote, following its cellular polarization. However, the regulatory mechanism of zygote polarization is unclear due to technical issues. The zygote is located deep in the seed (ovule) in flowers, which prevents the living dynamics of zygotes from being observed. In addition, elucidation of molecular pathways by conventional forward genetic screens was not enough because of high gene redundancy in early development. Here, we present a review introducing two new methods, which have been developed to overcome these problems. Method 1: the two-photon live-cell imaging method provides a new system to visualize the dynamics of intracellular structures in Arabidopsis zygotes, such as cytoskeletons and vacuoles. Microtubules form transverse rings and control zygote elongation, while vacuoles dynamically change their shapes along longitudinal actin filaments and support polar nuclear migration. Method 2: the transcriptome method uses isolated Arabidopsis zygotes and egg cells to reveal the gene expression profiles before and after fertilization. This approach revealed that de novo transcription occurs extensively and immediately after fertilization. Moreover, inhibition of the de novo transcription was shown to sufficiently block the zygotic division, thus indicating a strong possibility that yet unidentified zygote regulators can be found using this transcriptome approach. These new strategies in Arabidopsis will help to further our understanding of the fundamental principles regarding the proper formation of plant bodies from unicellular zygotes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.