Abstract

We investigate the generation of single-transverse-mode Laguerre-Gaussian (LG) emission from a diode-end-pumped Nd:YVO4, 1064 nm laser using mode selection via intracavity spherical aberration (SA). We present both theoretical and experimental investigations, examining the limits of the order (both radial and angular indices) of the LG modes which can be produced, along with the resultant output power. We found that in order to generate single-mode emission of low-order LG modes which have relatively small beam diameters, lenses with shorter focal-length were required (to better differentiate neighboring LG modes via SA). The converse was true of LG modes with high-order. Through appropriate choice of the focal length of the intracavity lens, we were able to generate single-mode, LG0,±m laser output with angular indices m selectable from 1 to 95, as well as those with non-zero radial indices p of up to 4.

Highlights

  • Generation of structured light fields have been one of the most active topics of laser physics research because of their diverse range of applications [1,2,3,4,5] and their interesting dynamics [6,7,8,9]

  • The lowest-order, single-transverse-mode output that could be obtained from the cavity had an angular index m of 27, which was higher than the m = 10 obtained with the f = 33.9 mm lens used in our prior work

  • In conclusion, we have analyzed and experimentally verified the influence of intracavity spherical aberration (SA) on the range of single-mode LG output that can be generated from a diode-end-pumped Nd:YVO4 laser

Read more

Summary

Introduction

Generation of structured light fields have been one of the most active topics of laser physics research because of their diverse range of applications [1,2,3,4,5] and their interesting dynamics [6,7,8,9]. Direct-generation of structured light from light sources, for example, through selecting particular high-order transverse modes directly from a laser cavity, benefits superior power handling, beam quality and conversion efficiency compared with approaches based on external-cavity reshaping [1, 2]. Demonstrated approaches to direct-generation of high-order LG modes from laser cavities include ring-shaped pump beams, intracavity phase modulating elements, a cavity mirror with a defect spot and via natural or thermal birefringence [2, 11,12,13,14,15,16,17,18,19,20,21].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.