Abstract

Composition and size dependent band gap engineering with longer excited state charge carrier lifetime assist CdSxSe1–x alloy semiconductor quantum dots (QDs) as a promising candidate for quantum dot solar cell (QDSC). Colloidal CdSxSe1–x alloy QDs were synthesized using the hot injection method where a stoichiometric mixture of S-TOP and Se-TOP were injected at 270 °C in a mixture of Cd-oleate. The electron decoupled from hole in the alloyed structure due to delocalization of electron in electronically quasi type-II graded CdSxSe1–x alloyed structure. As a result, intraband electron cooling time increases from 100s of fs to sub 10 ps time scale in the alloyed graded structure. Extremely slow electron cooling time (∼8 ps) and less charge recombination (∼50% in >2 ns) as compared to both CdS and CdSe QDs are found to be beneficial for charge carrier extraction in QD solar cells. Using polysulfide electrolyte and Cu2S-deposited ITO glass plates as photocathode, the efficiency of the QD solar cell was measure...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.