Abstract

Background and purposeFlow disruption achieved by braided intrasaccular implants is a novel treatment strategy for cerebrovascular aneurysms. We hypothesized that the degree of intra-aneurysmal flow disruption can be quantified in vitro and is influenced by device position across the aneurysm neck. We tested this hypothesis using the Medina® Embolization Device (MED).MethodsTen different patient-specific elastic vascular models were manufactured. Models were connected to a pulsatile flow circuit, filled with a blood-mimicking fluid and treated by two operators using a single MED. Intra-aneurysmal flow velocity was measured using conventional and high-frequency digital subtraction angiography (HF-DSA) before and after each deployment. Aneurysm neck coverage by the implanted devices was assessed with flat detector computed tomography on a three-point Likert scale.ResultsA total of 80 individual MED deployments were performed by the two operators. The mean intra-aneurysmal flow velocity reduction after MED implantation was 33.6% (27.5–39.7%). No significant differences in neck coverage (p = 0.99) or flow disruption (p = 0.84) were observed between operators. The degree of flow disruption significantly correlated with neck coverage (ρ = 0.42, 95% CI: 0.21–0.59, p = 0.002) as well as with neck area (ρ = -0,35, 95% CI: -0.54 –-0.13, p = 0.024). On multiple regression analysis, both neck coverage and total neck area were independent predictors of flow disruption.ConclusionsThe degree of intra-aneurysmal flow disruption after MED implantation can be quantified in vitro and varies considerably between different aneurysms and different device configurations. Optimal device coverage across the aneurysm neck improves flow disruption and may thus contribute to aneurysm occlusion.

Highlights

  • Intra-aneurysmal flow disruption achieved by intrasaccular implants composed of a braided metallic mesh is a novel treatment option for cerebrovascular aneurysms

  • The degree of flow disruption significantly correlated with neck coverage (ρ = 0.42, 95% CI: 0.21–0.59, p = 0.002) as well as with neck area (ρ = -0,35, 95% CI: -0.54 –-0.13, p = 0.024)

  • A potential advantage of this device class over adjunctive techniques such as stent-assisted coil embolization is the lack of implanted material inside the parent vessel, which might reduce the risk of thromboembolic complications, alleviate the need for dual anti-platelet medication and allow use in acutely ruptured aneurysms [1]

Read more

Summary

Introduction

Intra-aneurysmal flow disruption achieved by intrasaccular implants composed of a braided metallic mesh is a novel treatment option for cerebrovascular aneurysms. Clinical experience suggests that complete coverage of the aneurysm neck by the braided petals should be achieved to maximize the flow-disrupting effect of the device [3,4,5]. Flow disruption achieved by braided intrasaccular implants is a novel treatment strategy for cerebrovascular aneurysms. We hypothesized that the degree of intra-aneurysmal flow disruption can be quantified in vitro and is influenced by device position across the aneurysm neck. We tested this hypothesis using the Medina® Embolization Device (MED)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.