Abstract

The impact of UV-B radiation on 10 genotypically different barley and tomato cultivars was tested in a predictive study to screen for potentially UV-tolerant accessions and to analyze underlying mechanisms for UV-B sensitivity. Plant response was analyzed by measuring thermoluminescence, fluorescence, gas exchange and antioxidant status. Generally, barley cultivars proved to be much more sensitive against UV-B radiation than tomato cultivars. Statistical cluster analysis could resolve two barley groups with distinct differences in reaction patterns. The UV-B sensitive group showed a stronger loss in PSII photochemistry and a lower gas-exchange performance and regulation after UV-B radiation compared to the more tolerant group. The results indicate that photosynthetic light and dark reactions have to play optimally in concert to render plants more tolerant against UV-B radiation. Hence, measuring thermoluminescence/fluorescence and gas exchange in parallel will have much higher potential in identifying tolerant cultivars and will help to understand the underlying mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.