Abstract

Non-equilibrium-statistical models of intracellular transport are built. The most significant features of these models are microscopic reversibility and the explicit considerations of the driving forces of the process - the ATP-ADP chemical potential difference. In this paper, water transport using contractile vacuoles, the transport and assembly of microtubules and microfilaments, the protein distribution within a cell, the transport of neurotransmitters from the synaptic cleft and the transport of substances between cells using plasmodesmata are discussed. Endocytosis and phagocytosis models are considered, and transport tasks and information transfer mechanisms inside the cell are explored. Based on an analysis of chloroplast movement, it was concluded that they have a complicated method of influencing each other in the course of their movements. The role of quantum effects in sorting and control transport mechanisms is also discussed. It is likely that quantum effects play a large role in these processes, otherwise reliable molecular recognition would be impossible, which would lead to very low intracellular transport efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.