Abstract

Increased sugar intake is implicated in Type-2 diabetes and fatty liver disease; however, the mechanisms through which glucose and fructose promote these conditions are unclear. We hypothesize that alterations in intestinal metabolite and microbiota profiles specific to each monosaccharide are involved. Two groups of six adult C57BL/6 mice were fed for 10-weeks with diets with glucose (G) or fructose (F) as sole carbohydrates, and a third group was fed with a normal chow carbohydrate mixture (N). Fecal metabolites were profiled by nuclear magnetic resonance (NMR) and microbial composition by real-time polymerase chain reaction (qPCR). Although N, G and F mice exhibited similar weight gains (with slight slower gains for F) and glucose tolerance, multivariate analysis of NMR data indicated that F mice were separated from N and G, with decreased butyrate and glutamate and increased fructose, succinate, taurine, tyrosine, and xylose. The different sugar diets also resulted in distinct intestinal microbiota profiles. That associated with fructose seemed to hold more potential to induce host metabolic disturbances compared to glucose, mainly by promoting bile acid deconjugation and taurine release and compromising intestinal barrier integrity. This may reflect the noted nonquantitative intestinal fructose absorption hence increasing its availability for microbial metabolism, a subject for further investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.