Abstract

Recent years have witnessed extensive research activity in modeling biological phenomena as well as in developing intervention strategies for such phenomena. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. In this paper, two different intervention strategies, namely direct and indirect, are proposed for the S-system model. In the indirect approach, the prespecified desired values for the target variables are used to compute the reference values for the control inputs, and two control algorithms, namely simple sampled-data control and model predictive control (MPC), are developed for transferring the control variables from their initial values to the computed reference ones. In the direct approach, a MPC algorithm is developed that directly guides the target variables to their desired values. The proposed intervention strategies are applied to the glycolytic-glycogenolytic pathway and the simulation results presented demonstrate the effectiveness of the proposed schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.