Abstract

We propose a new approach to compute an interval over-approximation of the finite time reachable set for a large class of nonlinear systems. This approach relies on the notions of sensitivity matrices, which are the partial derivatives representing the variations of the system trajectories in response to variations of the initial states. Using interval arithmetics, we first over-approximate the possible values of the second-order sensitivity at the final time of the reachability problem. Then we exploit these bounds and the evaluation of the first-order sensitivity matrices at a few sampled initial states to obtain an over-approximation of the first-order sensitivity, which is in turn used to over-approximate the reachable set of the initial system. Unlike existing methods relying only on the first-order sensitivity matrix, this new approach provides guaranteed over-approximations of the first-order sensitivity and can also provide such over-approximations with an arbitrary precision by increasing the number of samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.