Abstract

The paper deals with passive fault tolerant control for linear parameter varying systems subject to component faults. Under the assumption that the faults magnitudes are considered unknown but bounded, a novel methodology is proposed using interval observer with an [Formula: see text] formalism to attenuate the effects of the uncertainties and to improve the accuracy of the proposed observer. The necessary and sufficient conditions of the control system stability are developed in terms of matrix inequalities constraints using Lyapunov stability theory. Based on a linear state feedback, a fault tolerant control strategy is designed to handle component faults effect as well as external disturbances and preserve the system closed-loop stability for both fault-free and component faulty cases. Two simulation examples are presented to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.