Abstract

The effective population size N(e) is an important parameter in population genetics and conservation biology. In recent years, there has been great interest in the use of molecular markers to estimate N(e). Although the point estimates from molecular markers in general suffer from a low reliability, the use of single nucleotide polymorphism (SNP) markers over a wide range of genome is expected to remarkably improve the reliability. In this study, expressions were derived for interval estimates of N(e) from one published method, the heterozygote-excess method, when it is applied to SNP markers. The conditional variance theory is applied to the derivation of a confidence interval for N(e) under random union of gametes, monogamy and polygyny. Stochastic simulation shows that the obtained confidence interval is slightly conservative, but fairly useful for practical applications. The result is illustrated with real data on SNP markers in a pig strain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.