Abstract

We report measurements of the intersubband scattering rate between the first and second subband in a quantum-well structure with subband spacing (11 meV) smaller than the optical phonon energy. We measure the electron population in the second subband under CW excitation by a far-infrared laser tuned to the intersubband absorption frequency. This allows us to determine the intersubband relaxation rate using detailed balance. These measurements are novel because they are performed at very low excitation densities ( I⩾10 μW/cm 2). In this regime the heating of the electron gas is negligible, so that the optically excited population in the upper subband greatly exceeds any thermal population induced by laser heating. Therefore, the relaxation rate we measure is controlled by intersubband scattering rather than carrier cooling. At low temperature we obtain an intersubband lifetime of T 1=(1.2±0.4)10 −9 s which is power independent below 10 −1 W/cm 2, and approximately temperature independent for lattice temperatures between T=10 and 2.5 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.