Abstract

The ability to control the shape of thermal coagulation was investigated for various interstitial heating applicators incorporating planar transducers and device rotation. Magnetic-resonance-compatible interstitial ultrasound applicators were constructed and the effects of ultrasound power, frequency, scan rate and heating time on lesion radius were studied in heating experiments in excised liver tissue. Continuous thermal lesions were generated by scanning heating applicators over a 180° angular sector. The region of thermal coagulation was restricted to the prescribed sector. Lesion radius increased with acoustic power and heating time and decreased with increasing frequency. The relationship between the temperature distribution generated by the applicator and the resulting thermal lesion was assessed with MRI. Analysis of MR temperature maps revealed that the temperature distribution could be measured accurately within 2 mm from the surface of the applicator, and the boundary of thermal coagulation was defined by a temperature of 54 ± 2 °C. Calculations of temperature distributions indicated that slower scan rates can overcome the tendency of perfusion to reduce the radius of thermal lesion. This applicator design and delivery strategy make conformal interstitial heating possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.