Abstract

We studied the capacity of five species of aquatic bryophyte to accumulate metals, and the relationship between plant metal content and water composition, on the basis of 170 samples taken from 32 rivers in Galicia (NW Spain). In all cases, only the final two centimetres of the apex were analysed. Scapania undulata was the species with the highest accumulatory capacity, and Fissidens polyphyllus was that with the lowest. Fontinalis antipyretica, Rhynchostegium riparioides and Brachythecium rivulare displayed intermediate capacities for metal accumulation, but showed a broader range of variation in body concentration in comparison with similar contamination levels. This resolution capacity, together with a greater resistance to pollution and, in the study region, a wider distribution and higher abundance, suggests that the latter two species are the most useful for bioindication studies. Bioaccumulation factors were high for all metals studied, tending to increase with increasing body concentration but decreasing with increasing water concentration. The relationship between metal in plant and filtrable metal in water was low, but statistically significant for all the metals studied except Co in F. antipyretica and Cd, Pb and Co in S. undulata, F. polyphllyllus and B. rivulare. The influence of physical and chemical variables of the water on bioaccumulation was evaluated using step-wise multiple correlation analysis. Bioaccumulation is largely governed by physical and chemical factors, by the concentration of metal in the water and by the bioaccumulation factor of the bryophyte species. Sulphate concentration, pH and to a lesser extent nitrite, ammonia and FRP (filtrable reactive phosphate) appear to be the most important physical and chemical variables governing metal bioavailability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.