Abstract

Delamination in layered materials is analyzed in a fracture mechanical framework. The work deals with quasi-static propagation of crack fronts along planar interfaces between different isotropic, elastic layers. Special focus is here on local effects at the sides of the layers which are assumed to be stress free. The interface crack front meets the free sides of the specimen at an angle which depends on the elastic mismatch in the system. Finite element calculations allowing the shape of the crack front to be arbitrary are carried out for double cantilever beam type specimens. An iterative procedure is formulated which adjusts the shape of the crack front so that an interface fracture criterion is satisfied locally along the front. Apart from the overall shape of the crack front, the angle of intersection with the free sides is in particular determined numerically by this procedure. Comparisons with analytical formulations and experimental results are performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.