Abstract

Bacteria that produce heat-stable enterotoxins (STs), a leading cause of secretory diarrhea, are a major cause of morbidity and mortality worldwide. ST stimulates guanylyl cyclase C (GCC) and accumulation of intracellular cyclic GMP ([cGMP]i), which opens the cystic fibrosis transmembrane conductance regulator (CFTR)-related chloride channel, triggering intestinal secretion. Although the signaling cascade mediating ST-induced diarrhea is well characterized, antisecretory therapy targeting this pathway has not been developed. 2-ChloroATP (2ClATP) and its cell-permeant precursor, 2-chloroadenosine (2ClAdo), disrupt ST-dependent signaling in intestinal cells. However, whether the ability to disrupt guanylyl cyclase signaling translates into effective antisecretory therapy remains untested. In this study, the efficacy of 2ClAdo to prevent ST-induced water secretion by human intestinal cells was examined. In Caco-2 human intestinal cells, ST increased [cGMP]i, induced a chloride current, and stimulated net basolateral-to-apical water secretion. This effect on chloride current and water secretion was mimicked by the cell-permeant analog of cGMP, 8-bromo-cGMP. Treatment of Caco-2 cells with 2ClAdo prevented ST-induced increases in [cGMP]i, chloride current and water secretion. Inhibition of the downstream consequences of ST-GCC interaction reflects proximal disruption of cGMP production because 8-bromo-cGMP stimulated chloride current and water secretion in 2ClAdo-treated cells. Thus, this study demonstrates that disruption of guanylyl cyclase signaling is an effective strategy for antisecretory therapy and provides the basis for developing mechanism-based treatments for enterotoxigenic diarrhea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.