Abstract

Size effects and strain bursts that are observed in compression experiments of single crystalline micropillars are interpreted using a gradient plasticity model that can capture the process of sequential slip and heterogeneous yielding of thin material layers. According to in situ experiments during compression sub-grains and significant strain gradients develop, while deformation occurs through slip layers in the gauge region. In the multilayer strain gradient model, the higher order stress is discontinuous across the interface between a plastic layer and an elastic layer, but it becomes continuous across the interface between two plastic layers. Strain bursts occur when two neighboring layers yield. Based on this hypothesis the experimental stress–strain curves with strain bursts observed in micropillars can be fitted by properly selecting the number of layers that yield and the ratio of the internal length over the specimen size; the modulus and the yield stress are obtained from the experimental curves while the hardening modulus evolves during deformation based on the dislocation mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.