Abstract
Features are unary operators used to build record-like expressions. The resulting term algebras are encountered in linguistic computation and knowledge representation. We present a general description of feature logic and of a slightly restricted version, called record logic. It is shown that every first-order theory can be faithfully interpreted in a record logic with various additional axioms. This fact is used elsewhere [15] to extend a result of Tarski and Givant [14] on expressing first order theories in relation algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.