Abstract

Proton radiography experiments of laser-irradiated hohlraums performed at the OMEGA laser facility are analyzed using three-dimensional (3D) hydrodynamic simulations coupled to a proton trajectography package. Experiments with three different laser irradiation patterns were performed, and each produced a distinct proton image. By comparing these results with synthetic proton images obtained by sending protons through plasma profiles in the hohlraum obtained from 3D radiation hydrodynamic simulations, it is found that the simulated images agree favorably with the experimental images when electric fields, due to the electron pressure gradients that arise from 3D structures occurring during plasma expansion, are included. These comparisons provide quantitative estimates of the electric field present inside the hohlraums.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.