Abstract
Interpretability, transparency, and auditability of machine learning (ML)-driven investment has become a key issue for investment managers as many look to enhance or replace traditional factor-based investing. The authors show that symbolic artificial intelligence (SAI) provides a solution to this conundrum, with superior return characteristics compared to traditional factor-based stock selection, while producing interpretable outcomes. Their SAI approach is a form of <i>satisficing</i> that systematically learns investment decision rules (symbols) for stock selection, using an <i>a priori</i> algorithm, avoiding the need for error-prone approaches for secondary explanations (known as XAI). The authors compare the empirical performance of an SAI approach with a traditional factor-based stock selection approach, in an emerging market equities universe. They show that SAI generates superior return characteristics and would provide a viable and interpretable alternative to factor-based stock selection. Their approach has significant implications for investment managers, providing an ML alternative to factor investing but with interpretable outcomes that could satisfy internal and external stakeholders. <b>Key Findings</b> ▪ Symbolic artificial intelligence (SAI) for stock selection, a form of satisficing, provides an alternative to factor investing and overcomes the interpretability issues of many machine learning (ML) approaches. ▪ An SAI that could be applied at scale is shown to produce superior return characteristics to traditional factor-based stock selection. ▪ SAI’s superior stock selection is examined using notional visualizations of its decision boundaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.