Abstract
Neoadjuvant chemotherapy assessment is imperative for prognostication and clinical management of locally advanced gastric cancer. We propose an incremental supervised contrastive learning model (iSCLM), an interpretable artificial intelligence framework integrating pretreatment CT scans and H&E-stained biopsy images, for improved decision-making regarding neoadjuvant chemotherapy. We have constructed and tested iSCLM using retrospective data from 2,387 patients across 10 medical centers and evaluated its discriminative ability in a prospective cohort (132 patients; ChiCTR2300068917). iSCLM achieves areas under receiver operating characteristic curves of 0.846-0.876 across different test cohorts. Computed tomography (CT) and pathological attention heatmaps from Shapley additive explanations and global sort pooling illustrate additional benefits for capturing morphological features through supervised contrastive learning. Specifically, pathological top-ranked tiles exhibit decreased distances to tumor-invasive borders and increased inflammatory cell infiltration in responders compared with non-responders. Moreover, CD11c expression is elevated in responders. The developed interpretable model at the molecular pathology level accurately predicts chemotherapy efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.