Abstract

AbstractHydroxy‐terminated polyether (HTPE) binders are attractive in the weapons materials and equipment industry for their insensitive properties and flexibility. We propose an interpretable machine learning‐assisted modeling strategy to predict the mechanical properties of HTPE binders for the first time using machine learning methods. In this strategy, the effects of formulation composition, multiscale characterization, preparation conditions, and mechanical experimental conditions are evaluated on the mechanical properties of HTPE binders. As part of the study, three different techniques were used to predict material properties: bag‐based methods (Extra Random Tree, Random Forest), boosting‐based methods (XGBoost, CatBoost, and Gradient Boosted Regression), and Artificial Neural Networks (MLPs), all of which were highly accurate in predicting material properties. Based on this, SHAP analysis is used to explain how these influencing factors influence the material properties. An efficient method for examining HTPE binders formulations is provided by this strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.