Abstract

Abstract Background Rhabdomyolysis (RM) is a complex set of clinical syndromes. RM-induced acute kidney injury (AKI) is a common illness in war and military operations. This study aimed to develop an interpretable and generalizable model for early AKI prediction in patients with RM. Methods Retrospective analyses were performed on 2 electronic medical record databases: the eICU Collaborative Research Database and the Medical Information Mart for Intensive Care III database. Data were extracted from the first 24 hours after patient admission. Data from the two datasets were merged for further analysis. The extreme gradient boosting (XGBoost) model with the Shapley additive explanation method (SHAP) was used to conduct early and interpretable predictions of AKI. Results The analysis included 938 eligible patients with RM. The XGBoost model exhibited superior performance (area under the receiver operating characteristic curve [AUC] = 0.767) compared to the other models (logistic regression, AUC = 0.711; support vector machine, AUC = 0.693; random forest, AUC = 0.728; and naive Bayesian, AUC = 0.700). Conclusion Although the XGBoost model performance could be improved from an absolute perspective, it provides better predictive performance than other models for estimating the AKI in patients with RM based on patient characteristics in the first 24 hours after admission to an intensive care unit. Furthermore, including SHAP to elucidate AKI-related factors enables individualized patient treatment, potentially leading to improved prognoses for patients with RM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.