Abstract
Unlike popular modularized framework, end-to-end autonomous driving seeks to solve the perception, decision and control problems in an integrated way, which can be more adapting to new scenarios and easier to generalize at scale. However, existing end-to-end approaches are often lack of interpretability, and can only deal with simple driving tasks like lane keeping. In this article, we propose an interpretable deep reinforcement learning method for end-to-end autonomous driving, which is able to handle complex urban scenarios. A sequential latent environment model is introduced and learned jointly with the reinforcement learning process. With this latent model, a semantic birdeye mask can be generated, which is enforced to connect with certain intermediate properties in today’s modularized framework for the purpose of explaining the behaviors of learned policy. The latent space also significantly reduces the sample complexity of reinforcement learning. Comparison tests in a realistic driving simulator show that the performance of our method in urban scenarios with crowded surrounding vehicles dominates many baselines including DQN, DDPG, TD3 and SAC. Moreover, through masked outputs, the learned model is able to provide a better explanation of how the car reasons about the driving environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.