Abstract

Geometric wavelet-like transforms for univariate and multivariate manifold-valued data can be constructed by means of nonlinear stationary subdivision rules which are intrinsic to the geometry under consideration. We show that in an appropriate vector bundle setting for a general class of interpolatory wavelet transforms, which applies to Riemannian geometry, Lie groups and other geometries, Hölder smoothness of functions is characterized by decay rates of their wavelet coefficients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.