Abstract
We establish a one-parameter family of Harnack inequalities connecting the constrained trace Li–Yau differential Harnack inequality for the heat equation to the constrained trace Chow–Hamilton Harnack inequality for the Ricci flow on a 2-dimensional closed manifold with positive scalar curvature, and thereby generalize Chow’s interpolated Harnack inequality (J. Partial Diff. Eqs. 11 (1998), 137–140).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.