Abstract

We study relaxation dynamics in one-dimensional Bose gases, formulated as an initial value problem for the classical non-linear Schr\"{o}dinger equation. We propose an analytic technique which takes into account the exact spectrum of non-linear modes, that is both soliton excitations and dispersive continuum of radiation modes. Our method relies on the exact large-time asymptotics and uses the so-called dressing transformation to account for the solitons. The obtained results are quantitatively compared with the predictions of the linearized approach in the framework of the Bogoliubov--de Gennes theory. In the attractive regime, the interplay between solitons and radiation yields a damped oscillatory motion of the profile which resembles breathing. For the repulsive interaction, the solitons are confined in the sound cone region separated from the supersonic radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.