Abstract

By introducing the difference permittivity ratio η=(ε 2−ε 0)/(ε 1−ε 0), the Green matrix method for computing surface plasmon resonances is extended to binary nanostructures. Based on the near field coupling, the interplay of plasmon resonances in two closely packed nanostrips is investigated. At a fixed wavelength, with varying η the resonances exhibit different regions: the dielectric effect region, resonance chaos region, collective resonance region, resonance flat region, and new branches region. Simultaneously, avoiding crossing and mode transfer phenomena between the resonance branches are observed. These findings will be helpful to design hybrid plasmonic subwavelength structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.